Publications

    2025


  1. Exact Certification of (Graph) Neural Networks Against Label Poisoning
    Mahalakshmi Sabanayagam, Lukas Gosch, Stephan Günnemann, Debarghya Ghoshdastidar
    International Conference on Learning Representations (ICLR), 2025
  2. A Probabilistic Perspective on Unlearning and Alignment for Large Language Models
    Yan Scholten, Stephan Günnemann, Leo Schwinn
    International Conference on Learning Representations (ICLR), 2025
  3. Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning
    Yan Scholten, Stephan Günnemann
    International Conference on Learning Representations (ICLR), 2025
  4. Can Multimodal Large Language Models Truly Perform Multimodal In-Context Learning?
    Shuo Chen, Zhen Han, Bailan He, Jianzhe Liu, Mark Buckley, Yao Qin, Philip Torr, Volker Tresp, Jindong Gu
    IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025
  5. Robust Score Matching
    Richard Schwank, Andrew McCormack, Mathias Drton
    arXiv, 2025
  6. On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models
    Deniz Daum, Richard Osuala, Anneliese Riess, Georgios Kaissis, Julia A. Schnabel, Maxime Di Folco
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2025

    2024


  1. Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks
    Lukas Gosch, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar, Stephan Günnemann
    Conference on Neural Information Processing Systems (NeurIPS) 2024 AdvML-Frontiers Workshop, 2024
  2. Unifying Local and Global Shape Descriptors to Grade Soft-Tissue Sarcomas Using Graph Convolutional Networks
    Johannes Kiechle, Stefan M. Fischer, Daniel M. Lang, Maxime Di Folco, Sarah C. Foreman, Verena K. N. Rösner, Ann-Kathrin Lohse, Carolin Mogler, Carolin Knebel, Marcus R. Makowski, Klaus Woertler, Stephanie E. Combs, Alexandra S. Gersing, Jan C. Peeken, Julia A. Schnabel
    2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024
  3. Graph Neural Networks: A suitable Alternative to MLPs in Latent 3D Medical Image Classification?
    Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel
    MICCAI 2024 - GRAIL Workshop, 2024
  4. Investigating the role of morphology in deep learning-based liposarcoma grading
    Johannes Kiechle, Sarah C. Foreman, Stefan Fischer, Daniel Rusche, Verena Rösner, Ann-Kathrin Lohse, Carolin Mogler, Stephanie E. Combs, Marcus R. Makowski, Klaus Woertler, Daniel M. Lang, Julia A. Schnabel, Alexandra S. Gersing, Jan C. Peeken
    Radiotherapy and Oncology, 2024
  5. Understanding Jailbreak Success: A Study of Latent Space Dynamics in Large Language Models
    Sarah Ball, Frauke Kreuter, Nina Panickssery
    arXiv, 2024
  6. DiaMond: Dementia Diagnosis with Multi-Modal Vision Transformers Using MRI and PET
    Yitong Li, Morteza Ghahremani, Youssef Wally, Christian Wachinger
    IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025, 2024
  7. Quantifying Aleatoric and Epistemic Uncertainty: A Credal Approach
    Paul Hofman, Yusuf Sale, Eyke Hüllermeier
    International Conference on Machine Learning (ICML) 2024 Workshop on Structured Probabilistic Inference and Generative Modeling, 2024
  8. Explaining Bayesian Optimization by Shapley Values Facilitates Human-AI Collaboration
    Julian Rodemann, Federico Croppi, Philipp Arens, Yusuf Sale, Julia Herbinger, Bernd Bischl, Eyke Hüllermeier, Thomas Augustin, Conor J. Walsh, Giuseppe Casalicchio
    arXiv, 2024
  9. Quantifying Aleatoric and Epistemic Uncertainty with Proper Scoring Rules
    Paul Hofman, Yusuf Sale, Eyke Hüllermeier
    arXiv, 2024
  10. Constructing Confidence Intervals for Average Treatment Effects from Multiple Datasets
    Yuxin Wang, Maresa Schröder, Dennis Frauen, Jonas Schweisthal, Konstantin Hess, Stefan Feuerriegel
    arXiv, 2024
  11. Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models
    Yurou Liang, Oleksandr Zadorozhnyi, Mathias Drton
    International Conference on Probabilistic Graphical Models, 2024
  12. Cross-validating causal discovery via Leave-One-Variable-Out
    Daniela Schkoda, Philipp Faller, Patrick Blöbaum, Dominik Janzing
    arXiv, 2024
  13. The Missing Link: Allocation Performance in Causal Machine Learning
    Unai Fischer-Abaigar, Christoph Kern, Frauke Kreuter
    arXiv, 2024
  14. Relaxing Graph Transformers for Adversarial Attacks
    Philipp Foth, Lukas Gosch, Simon Geisler, Leo Schwinn, Stephan Günnemann
    arXiv, 2024
  15. G-Transformer for Conditional Average Potential Outcome Estimation over Time
    Konstantin Hess, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
    arXiv, 2024
  16. Conformal Prediction for Causal Effects of Continuous Treatments
    Maresa Schröder, Dennis Frauen, Jonas Schweisthal, Konstantin Heß, Valentyn Melnychuk, Stefan Feuerriegel
    arXiv, 2024
  17. DiffPO: A causal diffusion model for learning distributions of potential outcomes
    Yuchen Ma, Valentyn Melnychuk, Jonas Schweisthal, Stefan Feuerriegel
    38th Conference on Neural Information Processing Systems (NeurIPS), 2024
  18. Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
    Valentyn Melnychuk, Stefan Feuerriegel, Mihaela van der Schaar
    Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS), 2024
  19. Unified Guidance for Geometry-Conditioned Molecular Generation
    Sirine Ayadi, Leon Hetzel, Johanna Sommer, Fabian Theis, Stephan Günnemann
    38th Conference on Neural Information Processing Systems (NeurIPS), 2024
  20. Stable-Pose: Leveraging Transformers for Pose-Guided Text-to-Image Generation
    Jiajun Wang, Morteza Ghahremani, Yitong Li, Björn Ommer, Christian Wachinger
    Conference on Neural Information Processing Systems (NeurIPS), 2024
  21. Non-Parametric Neighborhood Test-Time Generalization: Application to Medical Image Classification
    Sameer Ambekar, Julia A. Schnabel, Daniel M. Lang
    MICCAI Student Board EMERGE Workshop, 2024
  22. Probabilistic predictions with Fourier neural operators
    Christopher Bülte, Philipp Scholl, Gitta Kutyniok
    Conference on Neural Information Processing Systems (NeurIPS)Workshop on Bayesian Decision-making and Uncertainty, 2024
  23. Constructing Confidence Intervals for 'the' Generalization Error -- a Comprehensive Benchmark Study
    Hannah Schulz-Kümpel, Sebastian Fischer, Thomas Nagler, Anne-Laure Boulesteix, Bernd Bischl, Roman Hornung
    arXiv, 2024
  24. Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think
    Xinpeng Wang, Chengzhi Hu, Bolei Ma, Paul Röttger, Barbara Plank
    1st Conference on Language Modeling (COLM), 2024
  25. Selective Test-Time Adaptation for Unsupervised Anomaly Detection using Neural Implicit Representations
    Sameer Ambekar, Julia A. Schnabel, Cosmin Bereca
    1st Conference on Language Modeling (COLM), 2024
  26. Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation Learning
    Amirhossein Vahidi, Lisa Wimmer, Anil Hüseyin Gündüz, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei
    European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD), 2024
  27. Probabilistic Self-supervised Learning via Scoring Rules Minimization
    Amirhossein Vahidi, Simon Schoßer, Lisa Wimmer, Yawei Li, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei
    International Conference on Learning Representations (ICLR), 2024
  28. PASTA: Pathology-Aware MRI to PET CroSs-modal TrAnslation with Diffusion Models
    Yitong Li, Igor Yakushev, Dennis M. Hedderich, Christian Wachinger
    Medical Image Computing and Computer Assisted Intervention (MICCAI), 2024
  29. Is Personalization Worth It? Notifying Blogs about a Privacy Issue Resulting from Poorly Implemented Consent Banners
    Theresa Kriecherbauer, Richard Schwank, Adrian Krauss, Konstantin Neureither, Lian Remme, Melanie Volkamer, Dominik Herrmann
    Proceedings of the 19th International Conference on Availability, Reliability and Security, 2024
  30. Conditional Independence in Stationary Diffusions
    Tobias Boege, Mathias Drton, Benjamin Hollering, Sarah Lumpp, Pratik Misra, Daniela Schkoda
    arXiv, 2024
  31. Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding
    Daniela Schkoda, Elina Robeva, Mathias Drton
    arXiv, 2024
  32. Stop Reasoning! When Multimodal LLMs with Chain-of-Thought Reasoning Meets Adversarial Images
    Zefeng Wang, Zhen Han, Shuo Chen, Fan Xue, Zifeng Ding, Xun Xiao, Volker Tresp, Philip Torr, Jindong Gu
    1st Conference of Language Modeling (COLM), 2024
  33. Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings
    Petar Bevanda, Nicolas Hoischen, Stefan Sosnowski, Sandra Hirche, Boris Houska
    arXiv, 2024
  34. Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space
    Mohamed Amine Ketata, Nicholas Gao, Johanna Sommer, Tom Wollschläger, Stephan Günnemann
    International Conference on Machine Learning (ICML) 2024 Workshop on Geometry-grounded Representation Learning and Generative Modeling, 2024
  35. Gaussian Process-Based Representation Learning via Timeseries Symmetries
    Petar Bevanda, Max Beier, Armin Lederer, Alexandre Capone, Stefan Georg Sosnowski, Sandra Hirche
    International Conference on Machine Learning (ICML) 2024 Workshop on Geometry-grounded Representation Learning and Generative Modeling, 2024
  36. Shape completion in the dark: completing vertebrae morphology from 3D ultrasound
    Miruna-Alexandra Gafencu, Yordanka Velikova, Mahdi Saleh, Tamas Ungi, Nassir Navab, Thomas Wendler, Mohammad Farid Azampour
    International Journal of Computer Assisted Radiology and Surgery, 2024
  37. Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?
    Shuo Chen, Zhen Han, Bailan He, Zifeng Ding, Wenqian Yu, Philip Torr, Volker Tresp, Jindong Gu
    International Conference on Learning Representations (ICLR) 2024 Workshop on Secure and Trustworthy Large Language Models, 2024
  38. Lazy Data Practices Harm Fairness Research
    Jan Simson, Alessandro Fabris, Christoph Kern
    Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, 2024
  39. Label-wise Aleatoric and Epistemic Uncertainty Quantification
    Yusuf Sale, Paul Hofman, Timo Löhr, Lisa Wimmer, Thomas Nagler, Eyke Hüllermeier
    Conference on Uncertainty in Artificial Intelligence (UAI), 2024
  40. Anatomy-aware computed tomography-to-ultrasound spine registration
    Mohammad Farid Azampour, Maria Tirindelli, Jane Lameski, Miruna-Alexandra Gafencu, Eleonora Tagliabue, Emad Fatemizadeh, Ilker Hacihaliloglu, Nassir Navab
    Medical Physics, 2024
  41. Causal machine learning for predicting treatment outcomes
    Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Alicia Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, Mihaela van der Schaar
    Nature Medicine, 2024
  42. From Barlow Twins to Triplet Training: Differentiating Dementia with Limited Data
    Yitong Li, Tom Nuno Wolf, Sebastian Pölsterl, Igor Yakushev, Dennis M. Hedderich, Christian Wachinger
    Medical Imaging with Deep Learning, 2024
  43. VariViT: A Vision Transformer for Variable Image Sizes
    Aswathi Varma, Suprosanna Shit, Chinmay Prabhakar, Daniel Scholz, Hongwei Bran Li, bjoern menze, Daniel Rueckert, Benedikt Wiestler
    Medical Imaging with Deep Learning, 2024
  44. Learning-based Prescribed-Time Safety for Control of Unknown Systems with Control Barrier Functions
    Tzu-Yuan Huang, Xiaobing Dai, Sihua Zhang, Alexandre Capone, Velimir Todorovski, Stefan Sosnowski, Sandra Hirche
    IEEE Control Systems Letters, 2024
  45. Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?
    Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou, Ludwig Bothmann, Bernd Bischl, David Rügamer
    International Conference on Machine Learning (ICML), 2024
  46. Explaining Kernel Clustering via Decision Trees
    Maximilian Fleissner, Leena Chennuru Vankadara, Debarghya Ghoshdastidar
    The Twelfth International Conference on Learning Representations, 2024
  47. Guaranteeing Robustness Against Real-World Perturbations In Time Series Classification Using Conformalized Randomized Smoothing
    Nicola Franco, Jakob Spiegelberg, Jeanette Miriam Lorenz, Stephan Günnemann
    The 40th Conference on Uncertainty in Artificial Intelligence, 2024
  48. mPLM-Sim: Better Cross-Lingual Similarity and Transfer in Multilingual Pretrained Language Models
    Peiqin Lin, Chengzhi Hu, Zheyu Zhang, André F. T. Martins, Hinrich Schütze
    Association for Computational Linguistics (EACL) 2024 Findings, 2024
  49. Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
    Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
    International Conference on Learning Representations (ICLR), 2024
  50. Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
    Konstantin Hess, Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
    International Conference on Learning Representations (ICLR), 2024
  51. A Neural Framework for Generalized Causal Sensitivity Analysis
    Dennis Frauen, Fergus Imrie, Alicia Curth, Valentyn Melnychuk, Stefan Feuerriegel, Mihaela van der Schaar
    International Conference on Learning Representations (ICLR), 2024
  52. Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
    Georg Manten, Cecilia Casolo, Emilio Ferrucci, Søren Wengel Mogensen, Cristopher Salvi, Niki Kilbertus
    arXiv, 2024
  53. Robust identifiability for symbolic recovery of differential equations
    Hillary Hauger, Philipp Scholl, Gitta Kutyniok
    ICASSP 2025, 2024
  54. Second-Order Uncertainty Quantification: A Distance-Based Approach
    Yusuf Sale, Viktor Bengs, Michele Caprio, Eyke Hüllermeier
    41st International Conference on Machine Learning (ICML), 2024
  55. A Novel Bayes’ Theorem for Upper Probabilities
    Michele Caprio, Yusuf Sale, Eyke Hüllermeier, Insup Lee
    2024 International Workshop on Epistemic Uncertainty in Artificial Intelligence, 2024
  56. Bridging the gap: Towards an expanded toolkit for AI-driven decision-making in the public sector
    Unai Fischer-Abaigar, Christoph Kern, Noam Barda, Frauke Kreuter
    Government Information Quarterly, 2024
  57. Non-Parametric Representation Learning with Kernels
    Pascal Esser, Maximilian Fleissner, Debarghya Ghoshdastidar
    The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24) 2024, 2024
  58. One Model Many Scores: Using Multiverse Analysis to Prevent Fairness Hacking and Evaluate the Influence of Model Design Decisions
    Jan Simson, Florian Pfisterer, Christoph Kern
    The 2024 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’24), 2024
  59. More Labels or Cases? Assessing Label Variation in Natural Language Inference
    Cornelia Gruber, Katharina Hechinger, Matthias Aßenmacher, Göran Kauermann, Barbara Plank
    Proceedings of the Third Workshop on Understanding Implicit and Underspecified Language, 2024
  60. (Predictable) performance bias in unsupervised anomaly detection
    Felix Meissen, Svenja Breuer, Moritz A. Knolle, Alena Buyx, Ruth Müller, Georgios Kaissis, Benedikt Wiestler, Daniel Rückert
    eBioMedicine, 2024
  61. An Automated Evaluation Framework for Graph Database Query Generation Leveraging Large Language Models
    Bailan He, Yushan Liu, Marcel Hildebrandt, Zifeng Ding, Yaomengxi Han, Volker Tresp
    CEUR Workshop Proceedings, 2024
  62. Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning
    Lukas Christ, Shahin Amiriparian, Manuel Milling, Ilhan Aslan, Björn W. Schuller
    Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2024
  63. Exploring Gender-Specific Speech Patterns in Automatic Suicide Risk Assessment
    Maurice Amiriparian Gerczuk, Shahin , Justina Lutz, Wolfgang Papazova Strube, Irina Hasan, Alkomiet , Björn W. Schuller
    Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2024
  64. Privacy for Groups Online: Context Matters
    Madiha Zahrar Choksi, Ero Balsa, Frauke Kreuter, Helen Nissenbaum
    Proceedings of the ACM on Human-Computer Interaction, 2024
  65. Ethnic Classifications in Algorithmic Fairness: Concepts, Measures and Implications in Practice
    Sofia Jaime, Christoph Kern
    2024 ACM Conference on Fairness, Accountability, and Transparency, FAccT, 2024
  66. This Paper Had the Smartest Reviewers - Flattery Detection Utilising an Audio-Textual Transformer-Based Approach
    Lucas Christ, Shahin Amiriparian, Friederike Hawighorst, Ann-Kathrin Schill, Angelo Boutalikakis, Lorenz Graf-Vlachy, Andreas König, Björn W. Schuller
    Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2024
  67. Learning-based adaption of robotic friction models
    Philipp Scholl, Maged Iskandar, Sebastian Wolf, Jinoh Lee, Aras Bacho, Alexander Dietrich, Alin Albu-Schäffer, Gitta Kutyniok
    Robotics and Computer-Integrated Manufacturing, 2024
  68. Computability of optimizers for AI and data science
    Yunseok Lee, Holger Boche, Gitta Kutyniok
    Handbook of Numerical Analysis, 2024
  69. A Mathematical Framework for Computability Aspects of Algorithmic Transparency
    Holger Boche, Adalbert Fono, Gitta Kutyniok
    IEEE International Symposium on Information Theory - Proceedings, 2024
  70. Reconciling privacy and accuracy in AI for medical imaging
    Alexander Ziller, Tamara T. Mueller, Simon Stieger, Leonhard F. Feiner, Johannes Brandt, Rickmer Braren, Daniel Rueckert, Georgios Kaissis
    Nature Machine Intelligence, 2024
  71. Towards Multimodal Prediction of Spontaneous Humor: A Novel Dataset and First Results
    Lukas Christ, Shahin Amiriparian, Alexander Kathan, Niklas Muller, Andreas Konig, Björn W. Schuller
    IEEE Transactions on Affective Computing, 2024
  72. Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks
    Stefan Fischer, Lina Felsner, Richard Osuala, Johannes Kiechle, Daniel Lang, Jan Peeken, Julia Schnabel
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2024
  73. Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma
    Aristeidis Papargyriou, Mulham Najajreh, David P. Cook, Carlo H. Maurer, Stefanie Bärthel, Hendrik A. Messal, Sakthi K. Ravichandran, Till Richter, Moritz Knolle, Thomas Metzler, Akul R. Shastri, Rupert Öllinger, Jacob Jasper, Laura Schmidleitner, Surui Wang, Christian Schneeweis, Hellen Ishikawa-Ankerhold, Thomas Engleitner, Laura Mataite, Mariia Semina, Hussein Trabulssi, Sebastian Lange, Aashreya Ravichandra, Maximilian Schuster, Sebastian Mueller, Katja Peschke, Arlett Schäfer, Sophie Dobiasch, Stephanie E. Combs, Roland M. Schmid, Andreas R. Bausch, Rickmer Braren, Irina Heid, Christina H. Scheel, Günter Schneider, Anja Zeigerer, Malte D. Luecken, Katja Steiger, Georgios Kaissis, Jacco van Rheenen, Fabian J. Theis, Dieter Saur, Roland Rad, Maximilian Reichert
    Nature Biomedical Engineering, 2024

    2023


  1. Learning Confident Classifiers in the Presence of Label Noise
    Asma Ahmed Hashmi, Aigerim Zhumabayeva, Nikita Kotelevskii, Artem Agafonov, Mohammad Yaqub, Maxim Panov, Martin Takáč
    SIAM SDM, 2023
  2. Automatic Vertebrae Segmentation in MR Volumes
    Orgest Xhelili, Miruna Gafencu, Francesca De Benetti, Nassir Navab, Thomas Wendler
    Bildverarbeitung für die Medizin 2023, 2023
  3. Fair Off-Policy Learning from Observational Data
    Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
    International Conference on Machine Learning (ICML), 2023
  4. Assessing Robustness via Score-based Adversarial Image Generation
    Marcel Kollovieh, Lukas Gosch, Yan Scholten, Marten Lienen, Stephan Günnemann
    arXiv, 2023
  5. Expressivity of graph neural networks through the lens of adversarial robustness
    Francesco Campi, Lukas Gosch, Tom Wollschläger, Yan Scholten, Stephan Günnemann
    2nd AdvML Frontiers workshop at the 40th International Conference on Machine Learning (ICML), 2023
  6. Counterfactual Fairness for Predictions using Generative Adversarial Networks
    Yuchen Ma, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
    arXiv, 2023
  7. Learning Counterfactually Invariant Predictors
    Francesco Quinzan, Cecilia Casolo, Krikamol Muandet, Yucen Luo, Niki Kilbertus
    Transaction on Machine Learning Research, 2023
  8. LoHoRavens: A Long-Horizon Language-Conditioned Benchmark for Robotic Tabletop Manipulation
    Shengqiang Zhang, Philipp Wicke, Lütfi Kerem Şenel, Luis Figueredo, Abdeldjallil Naceri, Sami Haddadin, Barbara Plank, Hinrich Schütze
    UAI workshop causality in time series, 2023
  9. Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape Reconstruction from Point Clouds
    Hector Andrade-Loarca, Julius Hege, Daniel Cremers, Gitta Kutyniok
    arXiv, 2023
  10. Conformal Prediction with Partially Labeled Data
    Alireza Javanmardi, Yusuf Sale, Paul Hofman, Eyke Hüllermeier
    Twelfth Symposium on Conformal and Probabilistic Prediction with Applications (COPA), 2023
  11. Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?
    Yusuf Sale, Michele Caprio, Eyke Hüllermeier
    Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI), 2023
  12. A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity
    Philippa Meiser, Moritz A. Knolle, Anna Hirschberger, Gustavo P. de Almeida, Felix Bayerl, Sebastian Lacher, Anna-Marie Pedde, Sophie Flommersfeld, Julian Hönninger, Leonhard Stark, Fabian Stögbauer, Martina Anton, Markus Wirth, Dirk Wohlleber, Katja Steiger, Veit R. Buchholz, Barbara Wollenberg, Christina E. Zielinski, Rickmer Braren, Daniel Rueckert, Percy A. Knolle, Georgios Kaissis, Jan P. Böttcher
    Cancer Cell, 2023
  13. Uncertainty Estimation for Molecules: Desiderata and Methods
    Tom Wollschläger, Nicholas Gao, Bertrand Charpentier, Mohamed Amine Ketata, Stephan Günnemann
    International Conference on Machine Learning (ICML), 2023
  14. Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs Using Confidence-Augmented Reinforcement Learning
    Zifeng Ding, Jingpei Wu, Zongyue Li, Yunpu Ma, Volker Tresp
    Machine Learning and Knowledge Discovery in Databases: Research Track, 2023
  15. ForecastTKGQuestions: A Benchmark for Temporal Question Answering and Forecasting over Temporal Knowledge Graphs
    Zifeng Ding, Zongyue Li, Ruoxia Qi, Jingpei Wu, Bailan He, Yunpu Ma, Zhao Meng, Shuo Chen, Ruotong Liao, Zhen Han, Volker Tresp
    The Semantic Web (ISWC), 2023
  16. A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models
    Jindong Gu, Zhen Han, Shuo Chen, Ahmad Beirami, Bailan He, Gengyuan Zhang, Ruotong Liao, Yao Qin, Volker Tresp, Philip Torr
    arXiv, 2023
  17. Learning Meta Representations of One-shot Relations for Temporal Knowledge Graph Link Prediction
    Zifeng Ding, Bailan He, Yunpu Ma, Zhen Han, Volker Tresp
    International Joint Conference on Neural Networks (IJCNN), 2023
  18. Expressivity of Spiking Neural Networks through the Spike Response Model
    Manjot Singh, Adalbert Fono, Gitta Kutyniok
    UniReps: the First Workshop on Unifying Representations in Neural Models, 2023
  19. On the Localization of Ultrasound Image Slices within Point Distribution Models
    Lennart Bastian, Vincent Bürgin, Ha Young Kim, Alexander Baumann, Benjamin Busam, Mahdi Saleh, Nassir Navab
    International Workshop on Shape in Medical Imaging, 2023
  20. S3M: Scalable Statistical Shape Modeling through Unsupervised Correspondences
    Lennart Bastian, Alexander Baumann, Emily Hoppe, Vincent Bürgin, Ha Young Kim, Mahdi Saleh, Benjamin Busam, Nassir Navab
    Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, 2023
  21. Robust vertebra identification using simultaneous node and edge predicting Graph Neural Networks
    Vincent Bürgin, Raphael Prevost, Marijn F. Stollenga
    Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, 2023
  22. On the Challenges and Practices of Reinforcement Learning from Real Human Feedback
    Timo Kaufmann, Sarah Ball, Jacob Beck, Eyke Hüllermeier, Frauke Kreuter
    ECML-PKDD HLDM’23 Workshop, 2023
  23. Seeing ChatGPT Through Students' Eyes: An Analysis of TikTok Data
    Anna-Carolina Haensch, Sarah Ball, Markus Herklotz, Frauke Kreuter
    Conference: 2023 Big Data Meets Survey Science (BigSurv), 2023
  24. Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
    Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer
    International Joint Conferences on Artificial Intelligence (IJCAI), 2023
  25. Automated wildlife image classification: An active learning tool for ecological applications
    Ludwig Bothmann, Lisa Wimmer, Omid Charrakh, Tobias Weber, Hendrik Edelhoff, Wibke Peters, Hien Nguyen, Caryl Benjamin, Annette Menzel
    Ecological Informatics, 2023
  26. Quantifying aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate measures?
    Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, Eyke Hüllermeier
    Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 2023
  27. Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions
    Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann
    Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023
  28. Goodness-of-Fit Tests for Linear Non-Gaussian Structural Equation Models
    Daniela Schkoda, Mathias Drton
    arXiv, 2023
  29. Optimal privacy guarantees for a relaxed threat model: Addressing sub-optimal adversaries in differentially private machine learning
    Georgios Kaissis, Alexander Ziller, Stefan Kolek, Anneliese Riess, Daniel Rueckert
    Conference on Neural Information Processing Systems (NeurIPS), 2023
  30. Explaining Image Classifiers with Multiscale Directional Image Representation
    Stefan Kolek, Robert Windesheim, Hector Andrade Loarca, Gitta Kutyniok, Ron Levie
    CVPR, 2023
  31. occupationMeasurement: A Comprehensive Toolbox for Interactive Occupation Coding in Surveys
    Jan Simson, Olga Kononykhina, Malte Schierholz
    Journal of Open Source Software, 2023
  32. How games can make behavioural science better
    Bria Long, Jan Simson, Andrés Buxó-Lugo, Duane G. Watson, Samuel A. Mehr
    Nature, 2023
  33. Sharp Bounds for Generalized Causal Sensitivity Analysis
    Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
    Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023
  34. Reliable Off-Policy Learning for Dosage Combinations
    Jonas Schweisthal, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
    Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023
  35. Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model
    Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
    Thirty-seventh Conference on Neural Information Processing Systems, 2023
  36. Normalizing Flows for Interventional Density Estimation
    Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
    International Conference on Machine Learning (ICML), 2023
  37. Sources of Uncertainty in Machine Learning -- A Statisticians' View
    Cornelia Gruber, Patrick Oliver Schenk, Malte Schierholz, Frauke Kreuter, Göran Kauermann
    arXiv, 2023
  38. Provable Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More
    Jan Schuchardt, Yan Scholten, Stephan Günnemann
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  39. Hierarchical Randomized Smoothing
    Yan Scholten, Jan Schuchardt, Aleksandar Bojchevski, Stephan Günnemann
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  40. Revisiting Robustness in Graph Machine Learning
    Lukas Gosch, Daniel Sturm, Simon Geisler, Stephan Günnemann
    International Conference on Learning Representations (ICLR), 2023
  41. Transferability of graph neural networks: An extended graphon approach
    Sohir Maskey, Ron Levie, Gitta Kutyniok
    Applied and Computational Harmonic Analysis, 2023
  42. Neural (Tangent Kernel) Collapse
    Mariia Seleznova, Dana Weitzner, Raja Giryes, Gitta Kutyniok, Hung-Hsu Chou
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  43. A Fractional Graph Laplacian Approach to Oversmoothing
    Sohir Maskey, Raffaele Paolino, Aras Bacho, Gitta Kutyniok
    Advances in Neural Information Processing Systems (NeurIPS), 2023
  44. Sumformer: Universal Approximation for Efficient Transformers
    Silas Alberti, Niclas Dern, Laura Thesing, Gitta Kutyniok
    Proceedings of Machine Learning Research, 2023

    2022


  1. Few-Shot Inductive Learning on Temporal Knowledge Graphs using Concept-Aware Information
    Zifeng Ding, Jingpei Wu, Bailan He, Yunpu Ma, Zhen Han, Volker Tresp
    Conference paper, Automated Knowledge Base Construction, 2022
  2. Generalization Analysis of Message Passing Neural Networks on Large Random Graphs
    Sohir Maskey, Ron Levie, Yunseok Lee, Gitta Kutyniok
    Advances in Neural Information Processing Systems (NeurIPS), 2022
  3. Training Differentially Private Graph Neural Networks with Random Walk Sampling
    Morgane Ayle, Jan Schuchardt, Lukas Gosch, Daniel Zügner, Stephan Günnemann
    Workshop on Trustworthy and Socially Responsible Machine Learning. Conference on Neural Information Processing Systems (NeurIPS), 2022
  4. Graph Scattering beyond Wavelet Shackles
    Christian Koke, Gitta Kutyniok
    Advances in Neural Information Processing Systems (NeurIPS), 2022
  5. OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
    Yangze Zhou, Gitta Kutyniok, Bruno Ribeiro
    Advances in Neural Information Processing Systems (NeurIPS), 2022