- Individualized mapping of aberrant cortical thickness via stochastic cortical self-reconstruction
 Christian Wachinger, Dennis M. Hedderich, Melissa Thalhammer, Fabian Bongratz
 Medical Image Analysis, 2026
- Temporal Neural Cellular Automata: Application to Modeling of Contrast Enhancement in Breast MRI
 Daniel M. Lang, Richard Osuala, Veronika Spieker, Karim Lekadir, Rickmer Braren, Julia Schnabel
 Lecture Notes in Computer Science, 2026
2026
- Revisiting Active Learning under (Human) Label Variation
 Cornelia Gruber, Helen Alber, Bernd Bischl, Göran Kauermann, Barbara Plank, Matthias Aßenmacher
 4th Workshop on Perspectivist Approaches to NLP, 2025
- Deep Research Brings Deeper Harm
 Shuo Chen, Zonggen Li, Zhen Han, Bailan He, Tong Liu, Haokun Chen, Georg Groh, Philip Torr, Volker Tresp, Jindong Gu
 The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS), 2025
- Conformal Prediction for Causal Effects of Continuous Treatments
 Maresa Schröder, Dennis Frauen, Jonas Schweisthal, Konstantin Heß, Valentyn Melnychuk, Stefan Feuerriegel
 The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS), 2025
- Sequence Modeling with Spectral Mean Flows
 Kim Jinwoo, Beier Max, Bevanda Petar, Kim Nayun, Hong Seunghoon
 The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS), 2025
- ExPLAIND: Unifying Model, Data, and Training Attribution to Study Model Behavior
 Florian Eichin, Yupei Du, Philipp Mondorf, Maria Matveev, Barbara Plank, Michael A. Hedderich
 arXiv, 2025
- The Diashow Paradox: Stronger 3D-Aware Representations Emerge from Image Sets, Not Videos
 Duc Nguyen Tien, Sonnweber Anna, Weber Mark, Araslanov Nikita, Cremers Daniel
 Structural Priors for Vision Workshop at ICCV'25, 2025
- INR meets Multi-Contrast MRI Reconstruction
 Natascha Niessen, Carolin M. Pirkl, Ana Beatriz Solana, Hannah Eichhorn, Veronika Spieker, Wenqi Huang, Tim Sprenger, Marion I. Menzel, Julia A. Schnabel
 Reconstruction and Imaging Motion Estimation (RIME) Workshop at MICCAI 2025, 2025
- Beyond Proxy Variables: Extending Refugee Allocation Algorithms for Equitable Predictions
 Clara Strasser Ceballos, Marcus Novotny, Christoph Kern
 Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2025
- Collision Mass Map for Safe and Efficient Human-Robot Interaction
 Julian Balletshofer, Robin Jeanne Kirschner, Matthias Althoff
 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025), 2025
- SynthACticBench: A Capability-Based Synthetic Benchmark for Algorithm Configuration
 Valentin Margraf, Anna Lappe, Marcel Wever, Carolin Benjamins, Eyke Hüllermeier, Marius Lindauer
 NH Malaga Hotel Malaga Spain, 2025
- Quantum Computer Benchmarking: An Explorative Systematic Literature Review
 Tobias Rohe, Federico Harjes Ruiloba, Sabrina Egger, Sebastian Beck, Jonas Stein, Claudia Linnhoff-Popien
 arXiv, 2025
- Single-cell differential expression analysis between conditions within nested settings
 Leon Hafner, Gregor Sturm, Sarah Lumpp, Mathias Drton, Markus List
 Briefings in Bioinformatics, 2025
- Learning Interpretable Queries for Explainable Image Classification with Information Pursuit
 Stefan Kolek, Aditya Chattopadhyay, Kwan Ho Ryan Chan, Hector Andrade-Loarca, Gitta Kutyniok, Réne Vidal
 International Conference on Computer Vision, ICCV 2025, 2025
- VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for Enhanced Indoor View Synthesis
 Sen Wang, Qing Cheng, Stefano Gasperini, Wei Zhang, Shun-Cheng Wu, Niclas Zeller, Daniel Cremers, Nassir Navab
 IEEE Robotics and Automation Letters, 2025
- On weak convergence of Gaussian conditional distributions
 Sarah Lumpp, Mathias Drton
 Statistics & Probability Letters, 2025
- Learning Safe Control via On-the-Fly Bandit Exploration
 Alexandre Capone, Ryan Cosner, Aaaron Ames, Sandra Hirche
 The Thirteenth International Conference on Learning Representations (ICLR 2025), 2025
- Location matching on shaky grounds: Re-evaluating algorithms for refugee allocation
 Clara Strasser Ceballos, Christoph Kern
 FAccT '25: The 2025 ACM Conference on Fairness, Accountability, and Transparency, 2025
- Uncertainty Quantification with Proper Scoring Rules: Adjusting Measures to Prediction Tasks
 Paul Hofman, Yusuf Sale, Eyke Hüllermeier
 arXiv, 2025
- An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression
 Christopher Bülte, Yusuf Sale, Timo Löhr, Paul Hofman, Gitta Kutyniok, Eyke Hüllermeier
 arXiv, 2025
- Conformal Prediction in Hierarchical Classification
 Thomas Mortier, Alireza Javanmardi, Yusuf Sale, Eyke Hüllermeier, Willem Waegeman
 arXiv, 2025
- Through the LLM Looking Glass: A Socratic Self-Assessment of Donkeys, Elephants, and Markets
 Molly Kennedy, Ayyoob Imani, Timo Spinde, Hinrich Schütze
 arXiv, 2025
- Conformal Prediction Regions are Imprecise Highest Density Regions
 Michele Caprio, Yusuf Sale, Eyke Hüllermeier
 International Symposium on Imprecise Probabilities (ISIPTA), 2025
- Conformal Prediction without Nonconformity Scores
 Hanselle Jonas, Javanmardi Alireza, Oberkofler Tobias Florin, Sale Yusuf, Hüllermeier Eyke
 The 41st Conference on Uncertainty in Artificial Intelligence, 2025
- Algorithms for reliable decision-making need causal reasoning
 Christoph Kern, Unai Fischer-Abaigar, Jonas Schweisthal, Dennis Frauen, Rayid Ghani, Stefan Feuerriegel, Mihaela van der Schaar, Frauke Kreuter
 Nature Computational Science, 2025
- PARADIM: A Platform to Support Research at the Interface of Data Science and Medical Imaging
 Yannick Lemaréchal, Gabriel Couture, François Pelletier, Ronan Lefol, Pierre-Luc Asselin, Samuel Ouellet, Jérémie Bernard, Leyla Ebrahimpour, Venkata S. K. Manem, Johanna Topalis, Balthasar Schachtner, Sébastien Jodogne, Philippe Joubert, Katharina Jeblick, Michael Ingrisch, Philippe Després
 Journal of Imaging Informatics in Medicine, 2025
- The Price of Robustness: Stable Classifiers Need Overparameterization
 Berg Jonas von, Fono Adalbert, Datres Massimiliano, Maskey Sohir, Kutyniok Gitta
 High-dimensional Learning Dynamics 2025, 2025
- Preventing Harmful Data Practices by using Participatory Input to Navigate the Machine Learning Multiverse
 Jan Simson, Fiona Draxler, Samuel Mehr, Christoph Kern
 Yokohama Japan, 2025
- Online Selective Conformal Prediction: Errors and Solutions
 Yusuf Sale, Aaditya Ramdas
 Transactions on Machine Learning Research (TMLR), 2025
- Conflicting Biases at the Edge of Stability: Norm versus Sharpness Regularization
 Vit Fojtik, Maria Matveev, Hung-Hsu Chou, Gitta Kutyniok, Johannes Maly
 arXiv, 2025
- Graph Neural Networks for Enhancing Ensemble Forecasts of Extreme Rainfall
 Christopher Bülte, Sohir Maskey, Philipp Scholl, Jonas Berg, Gitta Kutyniok
 ICLR 2025 Workshop on Tackling Climate Change with Machine Learning, 2025
- Privacy Amplification by Structured Subsampling for Deep Differentially Private Time Series Forecasting
 Jan Schuchardt, Mina Dalirrooyfard, Jed Guzelkabaagac, Anderson Schneider, Yuriy Nevmyvaka, Stephan Günnemann
 ICLR 2025 Workshop on Advances in Financial AI: Opportunities, Innovations and Responsible AI, 2025
- Cracking the Code: Evaluating Zero-Shot Prompting Methods for Providing Programming Feedback
 Ippisch Niklas, Haensch Anna-Carolina, Herklotz Markus, Simson Jan, Beck Jacob, Schierholz Malte
 ICLR 2025 Workshop on Human-AI Coevolution, 2025
- Differentially private learners for heterogeneous treatment effects
 Maresa Schröder, Valentyn Melnychuk, Stefan Feuerriegel
 The Thirteenth International Conference on Learning Representations (ICLR), 2025
- Surgical, Cheap, and Flexible: Mitigating False Refusal in Language Models via Single Vector Ablation
 Xinpeng Wang, Chengzhi Hu, Paul Röttger, Barbara Plank
 The Thirteenth International Conference on Learning Representations (ICLR), 2025
- Probabilistic neural operators for functional uncertainty quantification
 Christopher Bülte, Philipp Scholl, Gitta Kutyniok
 Transactions on Machine Learning Research, 2025
- Trust Me, I Know the Way: Predictive Uncertainty in the Presence of Shortcut Learning
 Lisa Wimmer, Bernd Bischl, Ludwig Bothmann
 Workshop on Spurious Correlation and Shortcut Learning: Foundations and Solutions, International Conference on Learning Representations (ICLR), 2025
- ParFam -- (Neural Guided) Symbolic Regression via Continuous Global Optimization
 Philipp Scholl, Katharina Bieker, Hillary Hauger, Gitta Kutyniok
 The Thirteenth International Conference on Learning Representations (ICLR), 2025
- The Value of Prediction in Identifying the Worst-Off
 Unai Fischer-Abaigar, Christoph Kern, Juan Carlos Perdomo
 International Conference on Learning Representations (ICLR), 2025
- Exact Certification of (Graph) Neural Networks Against Label Poisoning
 Mahalakshmi Sabanayagam, Lukas Gosch, Stephan Günnemann, Debarghya Ghoshdastidar
 International Conference on Learning Representations (ICLR), 2025
- A Probabilistic Perspective on Unlearning and Alignment for Large Language Models
 Yan Scholten, Stephan Günnemann, Leo Schwinn
 International Conference on Learning Representations (ICLR), 2025
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning
 Yan Scholten, Stephan Günnemann
 International Conference on Learning Representations (ICLR), 2025
- Can Multimodal Large Language Models Truly Perform Multimodal In-Context Learning?
 Shuo Chen, Zhen Han, Bailan He, Jianzhe Liu, Mark Buckley, Yao Qin, Philip Torr, Volker Tresp, Jindong Gu
 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025
- Robust Score Matching
 Richard Schwank, Andrew McCormack, Mathias Drton
 arXiv, 2025
- Explaining Bayesian Optimization by Shapley Values Facilitates Human-AI Collaboration
 Julian Rodemann, Federico Croppi, Philipp Arens, Yusuf Sale, Julia Herbinger, Bernd Bischl, Eyke Hüllermeier, Thomas Augustin, Conor J. Walsh, Giuseppe Casalicchio
 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2025
- Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space
 Mohamed Amine Ketata, Nicholas Gao, Johanna Sommer, Tom Wollschläger, Stephan Günnemann
 The Thirteenth International Conference on Learning Representations (ICLR 2025), and ICML 2024 Gram workshop (oral and best paper runner-up award), 2025
- Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
 Georg Manten, Cecilia Casolo, Emilio Ferrucci, Søren Wengel Mogensen, Cristopher Salvi, Niki Kilbertus
 The Thirteenth International Conference on Learning Representations (ICLR), 2025
- Goodness-of-Fit Tests for Linear Non-Gaussian Structural Equation Models
 Daniela Schkoda, Mathias Drton
 Biometrika, 2025
- Generalization Bounds for Message Passing Networks on Mixture of Graphons
 Sohir Maskey, Gitta Kutyniok, Ron Levie
 SIAM Journal on Mathematics of Data Science, 2025
- An Asymmetric Independence Model for Causal Discovery on Path Spaces
 Georg Manten, Cecilia Casolo, Søren Wengel. Mogensen, Niki Kilbertus
 Proceedings of Machine Learning Research, 2025
- Mathematical algorithm design for deep learning under societal and judicial constraints: The algorithmic transparency requirement
 Holger Boche, Adalbert Fono, Gitta Kutyniok
 Applied and Computational Harmonic Analysis, 2025
- Your Assumed DAG is Wrong And Here’s How To Deal With It
 Kirtan Padh, Zhufeng Li, Cecilia Casolo, Niki Kilbertus
 Proceedings of Machine Learning Research, 2025
- Complex-Valued Federated Learning with Differential Privacy and MRI Applications
 Anneliese Riess, Alexander Ziller, Stefan Kolek, Daniel Rueckert, Julia Schnabel, Georgios Kaissis
 Lecture Notes in Computer Science, 2025
- Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
 Kristian Schwethelm, Johannes Kaiser, Jonas Kuntzer, Mehmet Yiǧitsoy, Daniel Rückert, Georgios Kaissis
 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 2025
- Motion-robust T*2 quantification from low-resolution gradient echo brain MRI with physics-informed deep learning
 Hannah Eichhorn, Veronika Spieker, Kerstin Hammernik, Elisa Saks, Lina Felsner, Kilian Weiss, Christine Preibisch, Julia Schnabel
 Magnetic Resonance in Medicine, 2025
- Cross-Domain and Cross-Dimension Learning for Image-to-Graph Transformers
 Alexander H. Berger, Laurin Lux, Suprosanna Shit, Ivan Ezhov, Georgios Kaissis, Martin J. Menten, Daniel Rueckert, Johannes C. Paetzold
 Proceedings 2025 IEEE Winter Conference on Applications of Computer Vision Wacv, 2025
- Visual Privacy Auditing with Diffusion Models
 Kristian Schwethelm, Johannes Kaiser, Moritz Knolle, Sarah Lockfisch, Daniel Rückert, Alexander Ziller
 Transactions on Machine Learning Research, 2025
- Koopman-Equivariant Gaussian Processes
 Petar Bevanda, Max Beier, Alexandre Capone, Stefan Sosnowski, Sandra Hirche, Armin Lederer
 Proceedings of Machine Learning Research, 2025
- Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility Through Quantization
 Holger Boche, Vit Fojtik, Adalbert Fono, Gitta Kutyniok
 Journal of Fourier Analysis and Applications, 2025
- Task-Oriented Visual Object Pose Estimation for Robot Manipulation: A Modular Approach
 Ahmed Abdelrahman, Peter So, Hoan Quang Le, Abdalla Swikir, Sami Haddadin
 Springer Proceedings in Advanced Robotics, 2025
- Aleatoric and Epistemic Uncertainty in Conformal Prediction
 Yusuf Sale, Alireza Javanmardi, Eyke Hüllermeier
 Proceedings of Machine Learning Research, 2025
- On Differentially Private 3D Medical Image Synthesis with Controllable Latent Diffusion Models
 Deniz Daum, Richard Osuala, Anneliese Riess, Georgios Kaissis, Julia A. Schnabel, Maxime Di Folco
 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2025
- Enhancing the Utility of Privacy-Preserving Cancer Classification Using Synthetic Data
 Richard Osuala, Daniel M. Lang, Anneliese. Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Diaz, Julia Schnabel, Karim Lekadir
 Lecture Notes in Computer Science, 2025
- Inverse problems are solvable on real number signal processing hardware
 Holger Boche, Adalbert Fono, Gitta Kutyniok
 Applied and Computational Harmonic Analysis, 2025
- Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives
 Ayhan Can Erdur, Daniel Rusche, Daniel Scholz, Johannes Kiechle, Stefan Fischer, Óscar Llorián-Salvador, Josef A. Buchner, Mai Q. Nguyen, Lucas Etzel, Jonas Weidner, Marie-Christin Metz, Benedikt Wiestler, Julia Schnabel, Daniel Rueckert, Stephanie E. Combs, Jan C. Peeken
 Strahlentherapie und Onkologie, 2025
- Infinite Width Limits of Self Supervised Neural Networks
 Maximilian Fleissner, Gautham Govind Anil, Debarghya Ghoshdastidar
 Proceedings of Machine Learning Research, 2025
2025
- Problem Solving Through Human-AI Preference-Based Cooperation
 Subhabrata Dutta, Timo Kaufmann, Goran Glavaš, Ivan Habernal, Kristian Kersting, Frauke Kreuter, Mira Mezini, Iryna Gurevych, Eyke Hüllermeier, Hinrich Schuetze
 arXiv, 2024
- Toward Near-Globally Optimal Nonlinear Model Predictive Control via Diffusion Models
 Tzu-Yuan Huang, Armin Lederer, Nicolas Hoischen, Jan Brüdigam, Xuehua Xiao, Stefan Sosnowski, Sandra Hirche
 7th Annual Learning for Dynamics & Control Conference (L4DC 2025), 2024
- Kernel-Based Optimal Control: An Infinitesimal Generator Approach
 Petar Bevanda, Nicolas Hoischen, Tobias Wittmann, Jan Brüdigam, Sandra Hirche, Boris Houska
 7th Annual Learning for Dynamics & Control Conference (L4DC 2025), 2024
- Provable Robustness of (Graph) Neural Networks Against Data Poisoning and Backdoor Attacks
 Lukas Gosch, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar, Stephan Günnemann
 Conference on Neural Information Processing Systems (NeurIPS) 2024 AdvML-Frontiers Workshop, and Transactions on Machine Learning Research, 2024
- Unifying Local and Global Shape Descriptors to Grade Soft-Tissue Sarcomas Using Graph Convolutional Networks
 Johannes Kiechle, Stefan M. Fischer, Daniel M. Lang, Maxime Di Folco, Sarah C. Foreman, Verena K. N. Rösner, Ann-Kathrin Lohse, Carolin Mogler, Carolin Knebel, Marcus R. Makowski, Klaus Woertler, Stephanie E. Combs, Alexandra S. Gersing, Jan C. Peeken, Julia A. Schnabel
 2024 IEEE International Symposium on Biomedical Imaging (ISBI), 2024
- Graph Neural Networks: A suitable Alternative to MLPs in Latent 3D Medical Image Classification?
 Johannes Kiechle, Daniel M. Lang, Stefan M. Fischer, Lina Felsner, Jan C. Peeken, Julia A. Schnabel
 MICCAI 2024 - GRAIL Workshop, 2024
- Investigating the role of morphology in deep learning-based liposarcoma grading
 Johannes Kiechle, Sarah C. Foreman, Stefan Fischer, Daniel Rusche, Verena Rösner, Ann-Kathrin Lohse, Carolin Mogler, Stephanie E. Combs, Marcus R. Makowski, Klaus Woertler, Daniel M. Lang, Julia A. Schnabel, Alexandra S. Gersing, Jan C. Peeken
 Radiotherapy and Oncology, 2024
- Understanding Jailbreak Success: A Study of Latent Space Dynamics in Large Language Models
 Sarah Ball, Frauke Kreuter, Nina Panickssery
 arXiv, 2024
- DiaMond: Dementia Diagnosis with Multi-Modal Vision Transformers Using MRI and PET
 Yitong Li, Morteza Ghahremani, Youssef Wally, Christian Wachinger
 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025, 2024
- Quantifying Aleatoric and Epistemic Uncertainty: A Credal Approach
 Paul Hofman, Yusuf Sale, Eyke Hüllermeier
 International Conference on Machine Learning (ICML) 2024 Workshop on Structured Probabilistic Inference and Generative Modeling, 2024
- Quantifying Aleatoric and Epistemic Uncertainty with Proper Scoring Rules
 Paul Hofman, Yusuf Sale, Eyke Hüllermeier
 arXiv, 2024
- Constructing Confidence Intervals for Average Treatment Effects from Multiple Datasets
 Wang Yuxin, Schröder Maresa, Frauen Dennis, Schweisthal Jonas, Hess Konstantin, Feuerriegel Stefan
 The Thirteenth International Conference on Learning Representations (ICLR), 2024
- Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models
 Yurou Liang, Oleksandr Zadorozhnyi, Mathias Drton
 International Conference on Probabilistic Graphical Models, 2024
- Cross-validating causal discovery via Leave-One-Variable-Out
 Daniela Schkoda, Philipp Faller, Patrick Blöbaum, Dominik Janzing
 arXiv, 2024
- The Missing Link: Allocation Performance in Causal Machine Learning
 Unai Fischer-Abaigar, Christoph Kern, Frauke Kreuter
 arXiv, 2024
- Relaxing Graph Transformers for Adversarial Attacks
 Philipp Foth, Lukas Gosch, Simon Geisler, Leo Schwinn, Stephan Günnemann
 arXiv, 2024
- G-Transformer for Conditional Average Potential Outcome Estimation over Time
 Konstantin Hess, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
 arXiv, 2024
- Conformal Prediction for Causal Effects of Continuous Treatments
 Maresa Schröder, Dennis Frauen, Jonas Schweisthal, Konstantin Heß, Valentyn Melnychuk, Stefan Feuerriegel
 arXiv, 2024
- DiffPO: A causal diffusion model for learning distributions of potential outcomes
 Yuchen Ma, Valentyn Melnychuk, Jonas Schweisthal, Stefan Feuerriegel
 38th Conference on Neural Information Processing Systems (NeurIPS), 2024
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
 Valentyn Melnychuk, Stefan Feuerriegel, Mihaela van der Schaar
 Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS), 2024
- Unified Guidance for Geometry-Conditioned Molecular Generation
 Sirine Ayadi, Leon Hetzel, Johanna Sommer, Fabian Theis, Stephan Günnemann
 38th Conference on Neural Information Processing Systems (NeurIPS), 2024
- Stable-Pose: Leveraging Transformers for Pose-Guided Text-to-Image Generation
 Jiajun Wang, Morteza Ghahremani, Yitong Li, Björn Ommer, Christian Wachinger
 Conference on Neural Information Processing Systems (NeurIPS), 2024
- Non-Parametric Neighborhood Test-Time Generalization: Application to Medical Image Classification
 Sameer Ambekar, Julia A. Schnabel, Daniel M. Lang
 MICCAI Student Board EMERGE Workshop, 2024
- Probabilistic predictions with Fourier neural operators
 Christopher Bülte, Philipp Scholl, Gitta Kutyniok
 Conference on Neural Information Processing Systems (NeurIPS)Workshop on Bayesian Decision-making and Uncertainty, 2024
- Constructing Confidence Intervals for 'the' Generalization Error -- a Comprehensive Benchmark Study
 Hannah Schulz-Kümpel, Sebastian Fischer, Thomas Nagler, Anne-Laure Boulesteix, Bernd Bischl, Roman Hornung
 arXiv, 2024
- Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think
 Xinpeng Wang, Chengzhi Hu, Bolei Ma, Paul Röttger, Barbara Plank
 1st Conference on Language Modeling (COLM), 2024
- Selective Test-Time Adaptation for Unsupervised Anomaly Detection using Neural Implicit Representations
 Sameer Ambekar, Julia A. Schnabel, Cosmin Bereca
 1st Conference on Language Modeling (COLM), 2024
- Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation Learning
 Amirhossein Vahidi, Lisa Wimmer, Anil Hüseyin Gündüz, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei
 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD), 2024
- Probabilistic Self-supervised Learning via Scoring Rules Minimization
 Amirhossein Vahidi, Simon Schoßer, Lisa Wimmer, Yawei Li, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei
 International Conference on Learning Representations (ICLR), 2024
- PASTA: Pathology-Aware MRI to PET CroSs-modal TrAnslation with Diffusion Models
 Yitong Li, Igor Yakushev, Dennis M. Hedderich, Christian Wachinger
 Medical Image Computing and Computer Assisted Intervention (MICCAI), 2024
- Is Personalization Worth It? Notifying Blogs about a Privacy Issue Resulting from Poorly Implemented Consent Banners
 Theresa Kriecherbauer, Richard Schwank, Adrian Krauss, Konstantin Neureither, Lian Remme, Melanie Volkamer, Dominik Herrmann
 Proceedings of the 19th International Conference on Availability, Reliability and Security, 2024
- Conditional Independence in Stationary Diffusions
 Tobias Boege, Mathias Drton, Benjamin Hollering, Sarah Lumpp, Pratik Misra, Daniela Schkoda
 arXiv, 2024
- Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding
 Daniela Schkoda, Elina Robeva, Mathias Drton
 arXiv, 2024
- Stop Reasoning! When Multimodal LLMs with Chain-of-Thought Reasoning Meets Adversarial Images
 Zefeng Wang, Zhen Han, Shuo Chen, Fan Xue, Zifeng Ding, Xun Xiao, Volker Tresp, Philip Torr, Jindong Gu
 1st Conference of Language Modeling (COLM), 2024
- Data-Driven Optimal Feedback Laws via Kernel Mean Embeddings
 Petar Bevanda, Nicolas Hoischen, Stefan Sosnowski, Sandra Hirche, Boris Houska
 arXiv, 2024
- Gaussian Process-Based Representation Learning via Timeseries Symmetries
 Petar Bevanda, Max Beier, Armin Lederer, Alexandre Capone, Stefan Georg Sosnowski, Sandra Hirche
 International Conference on Machine Learning (ICML) 2024 Workshop on Geometry-grounded Representation Learning and Generative Modeling, 2024
- Shape completion in the dark: completing vertebrae morphology from 3D ultrasound
 Miruna-Alexandra Gafencu, Yordanka Velikova, Mahdi Saleh, Tamas Ungi, Nassir Navab, Thomas Wendler, Mohammad Farid Azampour
 International Journal of Computer Assisted Radiology and Surgery, 2024
- Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?
 Shuo Chen, Zhen Han, Bailan He, Zifeng Ding, Wenqian Yu, Philip Torr, Volker Tresp, Jindong Gu
 International Conference on Learning Representations (ICLR) 2024 Workshop on Secure and Trustworthy Large Language Models, 2024
- Lazy Data Practices Harm Fairness Research
 Jan Simson, Alessandro Fabris, Christoph Kern
 Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency, 2024
- Label-wise Aleatoric and Epistemic Uncertainty Quantification
 Yusuf Sale, Paul Hofman, Timo Löhr, Lisa Wimmer, Thomas Nagler, Eyke Hüllermeier
 Conference on Uncertainty in Artificial Intelligence (UAI), 2024
- Anatomy-aware computed tomography-to-ultrasound spine registration
 Mohammad Farid Azampour, Maria Tirindelli, Jane Lameski, Miruna-Alexandra Gafencu, Eleonora Tagliabue, Emad Fatemizadeh, Ilker Hacihaliloglu, Nassir Navab
 Medical Physics, 2024
- Causal machine learning for predicting treatment outcomes
 Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Alicia Curth, Stefan Bauer, Niki Kilbertus, Isaac S. Kohane, Mihaela van der Schaar
 Nature Medicine, 2024
- From Barlow Twins to Triplet Training: Differentiating Dementia with Limited Data
 Yitong Li, Tom Nuno Wolf, Sebastian Pölsterl, Igor Yakushev, Dennis M. Hedderich, Christian Wachinger
 Medical Imaging with Deep Learning, 2024
- VariViT: A Vision Transformer for Variable Image Sizes
 Aswathi Varma, Suprosanna Shit, Chinmay Prabhakar, Daniel Scholz, Hongwei Bran Li, bjoern menze, Daniel Rueckert, Benedikt Wiestler
 Medical Imaging with Deep Learning, 2024
- Learning-based Prescribed-Time Safety for Control of Unknown Systems with Control Barrier Functions
 Tzu-Yuan Huang, Xiaobing Dai, Sihua Zhang, Alexandre Capone, Velimir Todorovski, Stefan Sosnowski, Sandra Hirche
 IEEE Control Systems Letters, 2024
- Assessing Robustness via Score-based Adversarial Image Generation
 Marcel Kollovieh, Lukas Gosch, Yan Scholten, Marten Lienen, Stephan Günnemann
 Transactions on Machine Learning, 2024
- Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?
 Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou, Ludwig Bothmann, Bernd Bischl, David Rügamer
 International Conference on Machine Learning (ICML), 2024
- Explaining Kernel Clustering via Decision Trees
 Maximilian Fleissner, Leena Chennuru Vankadara, Debarghya Ghoshdastidar
 The Twelfth International Conference on Learning Representations, 2024
- Guaranteeing Robustness Against Real-World Perturbations In Time Series Classification Using Conformalized Randomized Smoothing
 Nicola Franco, Jakob Spiegelberg, Jeanette Miriam Lorenz, Stephan Günnemann
 The 40th Conference on Uncertainty in Artificial Intelligence, 2024
- mPLM-Sim: Better Cross-Lingual Similarity and Transfer in Multilingual Pretrained Language Models
 Peiqin Lin, Chengzhi Hu, Zheyu Zhang, André F. T. Martins, Hinrich Schütze
 Association for Computational Linguistics (EACL) 2024 Findings, 2024
- Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
 Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
 International Conference on Learning Representations (ICLR), 2024
- Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
 Konstantin Hess, Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
 International Conference on Learning Representations (ICLR), 2024
- A Neural Framework for Generalized Causal Sensitivity Analysis
 Dennis Frauen, Fergus Imrie, Alicia Curth, Valentyn Melnychuk, Stefan Feuerriegel, Mihaela van der Schaar
 International Conference on Learning Representations (ICLR), 2024
- Robust identifiability for symbolic recovery of differential equations
 Hillary Hauger, Philipp Scholl, Gitta Kutyniok
 ICASSP 2025, 2024
- Second-Order Uncertainty Quantification: A Distance-Based Approach
 Yusuf Sale, Viktor Bengs, Michele Caprio, Eyke Hüllermeier
 41st International Conference on Machine Learning (ICML), 2024
- A Novel Bayes’ Theorem for Upper Probabilities
 Michele Caprio, Yusuf Sale, Eyke Hüllermeier, Insup Lee
 2024 International Workshop on Epistemic Uncertainty in Artificial Intelligence, 2024
- Bridging the gap: Towards an expanded toolkit for AI-driven decision-making in the public sector
 Unai Fischer-Abaigar, Christoph Kern, Noam Barda, Frauke Kreuter
 Government Information Quarterly, 2024
- Non-Parametric Representation Learning with Kernels
 Pascal Esser, Maximilian Fleissner, Debarghya Ghoshdastidar
 The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24) 2024, 2024
- One Model Many Scores: Using Multiverse Analysis to Prevent Fairness Hacking and Evaluate the Influence of Model Design Decisions
 Jan Simson, Florian Pfisterer, Christoph Kern
 The 2024 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’24), 2024
- More Labels or Cases? Assessing Label Variation in Natural Language Inference
 Cornelia Gruber, Katharina Hechinger, Matthias Aßenmacher, Göran Kauermann, Barbara Plank
 Proceedings of the Third Workshop on Understanding Implicit and Underspecified Language, 2024
- Reconciling privacy and accuracy in AI for medical imaging
 Alexander Ziller, Tamara T. Mueller, Simon Stieger, Leonhard F. Feiner, Johannes Brandt, Rickmer Braren, Daniel Rueckert, Georgios Kaissis
 Nature Machine Intelligence, 2024
- Ethnic Classifications in Algorithmic Fairness: Concepts, Measures and Implications in Practice
 Sofia Jaime, Christoph Kern
 2024 ACM Conference on Fairness, Accountability, and Transparency, FAccT, 2024
- Exploring Gender-Specific Speech Patterns in Automatic Suicide Risk Assessment
 Maurice Amiriparian Gerczuk, Shahin , Justina Lutz, Wolfgang Papazova Strube, Irina Hasan, Alkomiet , Björn W. Schuller
 Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2024
- An Automated Evaluation Framework for Graph Database Query Generation Leveraging Large Language Models
 Bailan He, Yushan Liu, Marcel Hildebrandt, Zifeng Ding, Yaomengxi Han, Volker Tresp
 CEUR Workshop Proceedings, 2024
- This Paper Had the Smartest Reviewers - Flattery Detection Utilising an Audio-Textual Transformer-Based Approach
 Lucas Christ, Shahin Amiriparian, Friederike Hawighorst, Ann-Kathrin Schill, Angelo Boutalikakis, Lorenz Graf-Vlachy, Andreas König, Björn W. Schuller
 Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2024
- Computability of optimizers for AI and data science
 Yunseok Lee, Holger Boche, Gitta Kutyniok
 Handbook of Numerical Analysis, 2024
- Computing-Model and Computing-Hardware Selection for ICT Under Societal and Judicial Constraints
 Yannik N Böck, Holger Boche, Frank H. P. Fitzek, Gitta Kutyniok
 IEEE Access, 2024
- On Prompt Sensitivity of ChatGPT in Affective Computing
 Mostafa M. Amin, Björn W. Schuller
 12th International Conference on Affective Computing and Intelligent Interaction (ACII), 2024
- Learning-based adaption of robotic friction models
 Philipp Scholl, Maged Iskandar, Sebastian Wolf, Jinoh Lee, Aras Bacho, Alexander Dietrich, Alin Albu-Schäffer, Gitta Kutyniok
 Robotics and Computer-Integrated Manufacturing, 2024
- Progressive Growing of Patch Size: Resource-Efficient Curriculum Learning for Dense Prediction Tasks
 Stefan Fischer, Lina Felsner, Richard Osuala, Johannes Kiechle, Daniel Lang, Jan Peeken, Julia Schnabel
 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2024
- (Predictable) performance bias in unsupervised anomaly detection
 Felix Meissen, Svenja Breuer, Moritz A. Knolle, Alena Buyx, Ruth Müller, Georgios Kaissis, Benedikt Wiestler, Daniel Rückert
 eBioMedicine, 2024
- Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning
 Lukas Christ, Shahin Amiriparian, Manuel Milling, Ilhan Aslan, Björn W. Schuller
 Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2024
- Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning
 Raffaele Paolino, Sohir Maskey, Pascal Welke, Gitta Kutyniok
 Advances in Neural Information Processing Systems, 2024
- A Mathematical Framework for Computability Aspects of Algorithmic Transparency
 Holger Boche, Adalbert Fono, Gitta Kutyniok
 IEEE International Symposium on Information Theory - Proceedings, 2024
- Learning-based Parameterized Barrier Function for Safety-Critical Control of Unknown Systems
 Sihua Zhang, Di-Hua Zhai, Xiaobing Dai, Tzu-yuan Huang, Yuanqing Xia, Sandra Hirche
 Proceedings of the IEEE Conference on Decision and Control, 2024
- Memorisation in Machine Learning: A Survey of Results
 Dmitrii Usynin, Moritz Knolle, Georgios Kaissis
 Transactions on Machine Learning Research, 2024
- Privacy for Groups Online: Context Matters
 Madiha Zahrar Choksi, Ero Balsa, Frauke Kreuter, Helen Nissenbaum
 Proceedings of the ACM on Human-Computer Interaction, 2024
- Towards Multimodal Prediction of Spontaneous Humor: A Novel Dataset and First Results
 Lukas Christ, Shahin Amiriparian, Alexander Kathan, Niklas Muller, Andreas Konig, Björn W. Schuller
 IEEE Transactions on Affective Computing, 2024
- Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma
 Aristeidis Papargyriou, Mulham Najajreh, David P. Cook, Carlo H. Maurer, Stefanie Bärthel, Hendrik A. Messal, Sakthi K. Ravichandran, Till Richter, Moritz Knolle, Thomas Metzler, Akul R. Shastri, Rupert Öllinger, Jacob Jasper, Laura Schmidleitner, Surui Wang, Christian Schneeweis, Hellen Ishikawa-Ankerhold, Thomas Engleitner, Laura Mataite, Mariia Semina, Hussein Trabulssi, Sebastian Lange, Aashreya Ravichandra, Maximilian Schuster, Sebastian Mueller, Katja Peschke, Arlett Schäfer, Sophie Dobiasch, Stephanie E. Combs, Roland M. Schmid, Andreas R. Bausch, Rickmer Braren, Irina Heid, Christina H. Scheel, Günter Schneider, Anja Zeigerer, Malte D. Luecken, Katja Steiger, Georgios Kaissis, Jacco van Rheenen, Fabian J. Theis, Dieter Saur, Roland Rad, Maximilian Reichert
 Nature Biomedical Engineering, 2024
2024
- Learning Confident Classifiers in the Presence of Label Noise
 Asma Ahmed Hashmi, Aigerim Zhumabayeva, Nikita Kotelevskii, Artem Agafonov, Mohammad Yaqub, Maxim Panov, Martin Takáč
 SIAM SDM, 2023
- Automatic Vertebrae Segmentation in MR Volumes
 Orgest Xhelili, Miruna Gafencu, Francesca De Benetti, Nassir Navab, Thomas Wendler
 Bildverarbeitung für die Medizin 2023, 2023
- Fair Off-Policy Learning from Observational Data
 Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
 International Conference on Machine Learning (ICML), 2023
- Expressivity of graph neural networks through the lens of adversarial robustness
 Francesco Campi, Lukas Gosch, Tom Wollschläger, Yan Scholten, Stephan Günnemann
 2nd AdvML Frontiers workshop at the 40th International Conference on Machine Learning (ICML), 2023
- Counterfactual Fairness for Predictions using Generative Adversarial Networks
 Yuchen Ma, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
 arXiv, 2023
- Learning Counterfactually Invariant Predictors
 Francesco Quinzan, Cecilia Casolo, Krikamol Muandet, Yucen Luo, Niki Kilbertus
 Transaction on Machine Learning Research, 2023
- LoHoRavens: A Long-Horizon Language-Conditioned Benchmark for Robotic Tabletop Manipulation
 Shengqiang Zhang, Philipp Wicke, Lütfi Kerem Şenel, Luis Figueredo, Abdeldjallil Naceri, Sami Haddadin, Barbara Plank, Hinrich Schütze
 UAI workshop causality in time series, 2023
- Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape Reconstruction from Point Clouds
 Hector Andrade-Loarca, Julius Hege, Daniel Cremers, Gitta Kutyniok
 arXiv, 2023
- Conformal Prediction with Partially Labeled Data
 Alireza Javanmardi, Yusuf Sale, Paul Hofman, Eyke Hüllermeier
 Twelfth Symposium on Conformal and Probabilistic Prediction with Applications (COPA), 2023
- Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?
 Yusuf Sale, Michele Caprio, Eyke Hüllermeier
 Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI), 2023
- A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity
 Philippa Meiser, Moritz A. Knolle, Anna Hirschberger, Gustavo P. de Almeida, Felix Bayerl, Sebastian Lacher, Anna-Marie Pedde, Sophie Flommersfeld, Julian Hönninger, Leonhard Stark, Fabian Stögbauer, Martina Anton, Markus Wirth, Dirk Wohlleber, Katja Steiger, Veit R. Buchholz, Barbara Wollenberg, Christina E. Zielinski, Rickmer Braren, Daniel Rueckert, Percy A. Knolle, Georgios Kaissis, Jan P. Böttcher
 Cancer Cell, 2023
- Uncertainty Estimation for Molecules: Desiderata and Methods
 Tom Wollschläger, Nicholas Gao, Bertrand Charpentier, Mohamed Amine Ketata, Stephan Günnemann
 International Conference on Machine Learning (ICML), 2023
- Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs Using Confidence-Augmented Reinforcement Learning
 Zifeng Ding, Jingpei Wu, Zongyue Li, Yunpu Ma, Volker Tresp
 Machine Learning and Knowledge Discovery in Databases: Research Track, 2023
- ForecastTKGQuestions: A Benchmark for Temporal Question Answering and Forecasting over Temporal Knowledge Graphs
 Zifeng Ding, Zongyue Li, Ruoxia Qi, Jingpei Wu, Bailan He, Yunpu Ma, Zhao Meng, Shuo Chen, Ruotong Liao, Zhen Han, Volker Tresp
 The Semantic Web (ISWC), 2023
- A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models
 Jindong Gu, Zhen Han, Shuo Chen, Ahmad Beirami, Bailan He, Gengyuan Zhang, Ruotong Liao, Yao Qin, Volker Tresp, Philip Torr
 arXiv, 2023
- Learning Meta Representations of One-shot Relations for Temporal Knowledge Graph Link Prediction
 Zifeng Ding, Bailan He, Yunpu Ma, Zhen Han, Volker Tresp
 International Joint Conference on Neural Networks (IJCNN), 2023
- Expressivity of Spiking Neural Networks through the Spike Response Model
 Manjot Singh, Adalbert Fono, Gitta Kutyniok
 UniReps: the First Workshop on Unifying Representations in Neural Models, 2023
- On the Localization of Ultrasound Image Slices within Point Distribution Models
 Lennart Bastian, Vincent Bürgin, Ha Young Kim, Alexander Baumann, Benjamin Busam, Mahdi Saleh, Nassir Navab
 International Workshop on Shape in Medical Imaging, 2023
- S3M: Scalable Statistical Shape Modeling through Unsupervised Correspondences
 Lennart Bastian, Alexander Baumann, Emily Hoppe, Vincent Bürgin, Ha Young Kim, Mahdi Saleh, Benjamin Busam, Nassir Navab
 Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, 2023
- Robust vertebra identification using simultaneous node and edge predicting Graph Neural Networks
 Vincent Bürgin, Raphael Prevost, Marijn F. Stollenga
 Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, 2023
- On the Challenges and Practices of Reinforcement Learning from Real Human Feedback
 Timo Kaufmann, Sarah Ball, Jacob Beck, Eyke Hüllermeier, Frauke Kreuter
 ECML-PKDD HLDM’23 Workshop, 2023
- Seeing ChatGPT Through Students' Eyes: An Analysis of TikTok Data
 Anna-Carolina Haensch, Sarah Ball, Markus Herklotz, Frauke Kreuter
 Conference: 2023 Big Data Meets Survey Science (BigSurv), 2023
- Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
 Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer
 International Joint Conferences on Artificial Intelligence (IJCAI), 2023
- Automated wildlife image classification: An active learning tool for ecological applications
 Ludwig Bothmann, Lisa Wimmer, Omid Charrakh, Tobias Weber, Hendrik Edelhoff, Wibke Peters, Hien Nguyen, Caryl Benjamin, Annette Menzel
 Ecological Informatics, 2023
- Quantifying aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate measures?
 Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, Eyke Hüllermeier
 Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, 2023
- Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions
 Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann
 Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023
- Optimal privacy guarantees for a relaxed threat model: Addressing sub-optimal adversaries in differentially private machine learning
 Georgios Kaissis, Alexander Ziller, Stefan Kolek, Anneliese Riess, Daniel Rueckert
 Conference on Neural Information Processing Systems (NeurIPS), 2023
- Explaining Image Classifiers with Multiscale Directional Image Representation
 Stefan Kolek, Robert Windesheim, Hector Andrade Loarca, Gitta Kutyniok, Ron Levie
 CVPR, 2023
- occupationMeasurement: A Comprehensive Toolbox for Interactive Occupation Coding in Surveys
 Jan Simson, Olga Kononykhina, Malte Schierholz
 Journal of Open Source Software, 2023
- How games can make behavioural science better
 Bria Long, Jan Simson, Andrés Buxó-Lugo, Duane G. Watson, Samuel A. Mehr
 Nature, 2023
- Sharp Bounds for Generalized Causal Sensitivity Analysis
 Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
 Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023
- Reliable Off-Policy Learning for Dosage Combinations
 Jonas Schweisthal, Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
 Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS), 2023
- Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model
 Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
 Thirty-seventh Conference on Neural Information Processing Systems, 2023
- Normalizing Flows for Interventional Density Estimation
 Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel
 International Conference on Machine Learning (ICML), 2023
- Sources of Uncertainty in Machine Learning -- A Statisticians' View
 Cornelia Gruber, Patrick Oliver Schenk, Malte Schierholz, Frauke Kreuter, Göran Kauermann
 arXiv, 2023
- Provable Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More
 Jan Schuchardt, Yan Scholten, Stephan Günnemann
 Advances in Neural Information Processing Systems (NeurIPS), 2023
- Hierarchical Randomized Smoothing
 Yan Scholten, Jan Schuchardt, Aleksandar Bojchevski, Stephan Günnemann
 Advances in Neural Information Processing Systems (NeurIPS), 2023
- Revisiting Robustness in Graph Machine Learning
 Lukas Gosch, Daniel Sturm, Simon Geisler, Stephan Günnemann
 International Conference on Learning Representations (ICLR), 2023
- Neural (Tangent Kernel) Collapse
 Mariia Seleznova, Dana Weitzner, Raja Giryes, Gitta Kutyniok, Hung-Hsu Chou
 Advances in Neural Information Processing Systems (NeurIPS), 2023
- Sumformer: Universal Approximation for Efficient Transformers
 Silas Alberti, Niclas Dern, Laura Thesing, Gitta Kutyniok
 Proceedings of Machine Learning Research, 2023
- Transferability of graph neural networks: An extended graphon approach
 Sohir Maskey, Ron Levie, Gitta Kutyniok
 Applied and Computational Harmonic Analysis, 2023
- A Fractional Graph Laplacian Approach to Oversmoothing
 Sohir Maskey, Raffaele Paolino, Aras Bacho, Gitta Kutyniok
 Advances in Neural Information Processing Systems (NeurIPS), 2023
2023
- Few-Shot Inductive Learning on Temporal Knowledge Graphs using Concept-Aware Information
 Zifeng Ding, Jingpei Wu, Bailan He, Yunpu Ma, Zhen Han, Volker Tresp
 Conference paper, Automated Knowledge Base Construction, 2022
- OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
 Yangze Zhou, Gitta Kutyniok, Bruno Ribeiro
 Advances in Neural Information Processing Systems (NeurIPS), 2022
- Graph Scattering beyond Wavelet Shackles
 Christian Koke, Gitta Kutyniok
 Advances in Neural Information Processing Systems (NeurIPS), 2022
- Training Differentially Private Graph Neural Networks with Random Walk Sampling
 Morgane Ayle, Jan Schuchardt, Lukas Gosch, Daniel Zügner, Stephan Günnemann
 Workshop on Trustworthy and Socially Responsible Machine Learning. Conference on Neural Information Processing Systems (NeurIPS), 2022
- Generalization Analysis of Message Passing Neural Networks on Large Random Graphs
 Sohir Maskey, Ron Levie, Yunseok Lee, Gitta Kutyniok
 Advances in Neural Information Processing Systems (NeurIPS), 2022
2022
